Mechanical properties of the esophageal wall.

نویسندگان

  • R K Goyal
  • P Biancani
  • A Phillips
  • H M Spiro
چکیده

Pressure-diameter curves of the esophagus were obtained to define its mechanical properties. The mucosal contribution to the strength of the esophagus was negligible until the outer diameter almost doubled, suggesting that small intraluminal pressures are held by the muscle layer alone. For larger deformations mucosal contribution increased and at failure the mucosa held over one-half of the failure pressure of the esophagus. The paths followed during loading and unloading are different and exhibit hysteresis. They are influenced by the rate of pressure change, being more compliant for low rates of pressure change. They are influenced by the history of loading, being different for successive loading-unloading cycles. If enough loading-unloading cycles are repeated a stable loop is reached, which does not change thereafter. Both the mucosa and the whole esophagus show increasing stiffness with increasing pressure. This behavior can be represented by a simple exponential relationship. However, at rapid rates of pressure increases, the esophageal muscles produce sigmoid loading curves, which gradually become exponential when repeating loading.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab Initio Study of Chirality Effects Onphonon Spectra, Mechanical and Thermal Properties of Nearly Samediameter Single Wall Carbon Nanotubes

In this paper, we have used density functional perturbation theory (DFPT) and Pseudo-potential method to calculate the phonon spectrum, phonon density of states (DOS), specific heat capacity and mechanical properties of (5,5) armchair and (9,0) zigzag Single Wall Carbon Nanotubes (SWCNTs). Our calculations show that Young’s modulusfor (5,5) and (9,0) nanotubesare higher than 1TPa. We have also ...

متن کامل

Hopper Wall Simulation in ANSYS to Determine Displacement Due to Single Ball Impact

Deformation of the silo wall due to the single ball impact is modeled in ANSYS. The material in silo, as a Winkler bed, is replaced by spring-damper elements and the spring stiffness and damper coefficients are evaluated of the granular material and wall properties. The granular material deformation under the specified force is measured to evaluate the granular stiffness to be used for determin...

متن کامل

Effect of Magnetic Field on Heat Transfer of Nanofluid with Variable Properties on the Inclined Enclosure

The purpose of this study is to investigate the effect of magnetic field on the fluid flow and natural convection of CuO-water nanofluids with variable properties in an inclined square enclosure. The horizontal walls of cavity are insulated, the left sidewall assumed as hot wall and the right sidewall assumed as cold wall. Effects of Rayleigh numbers 103, 104, 105</su...

متن کامل

Simulation and Investigation of Mechanical and Geometrical Properties of St/CP-Titanium Bimetal Sheet during the Single Point Incremental Forming Process

In this study, the incremental forming of explosively welded low carbon steel-commercially pure titanium bilayer sheet has been experimentally and numerically investigated. For this purpose, at first a finite element based analysis was proposed to predict forming force and thickness distribution to form this material by such process, that showed good agreements with the experimental results. Th...

متن کامل

Delayed Esophageal Pseudodiverticulum after Anterior Cervical Spine Fixation: Report of 2 Cases

Introduction: Although perforation of the esophagus, in the anterior cervical spine fixation, is well established, cases with delayed onset, especially cases that present pseudodiverticulum, are not common. In addition, management of the perforation in this situation is debated.  Case Report:   Delayed esophageal pseudodiverticulum was managed in two patients with a history of anterior spine fi...

متن کامل

Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction

Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 50 7  شماره 

صفحات  -

تاریخ انتشار 1971